试题
题目:
已知:在·ABCD中,对角线AC、BD交于点O,过点O分别作两条直线,交AD、BC、AB、CD于E、F、G、H四点.
求证:四边形EGFH是平行四边形.
答案
证明:∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,AD∥BC,
∴∠AEO=∠CFO,
在△AEO和△CFO中
AO=CO
∠AEO=∠CFO
∠AOE=∠COF
,
∴△AEO≌△CFO(AAS),
∴EO=FO,
∴四边形EGFH是平行四边形.
证明:∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,AD∥BC,
∴∠AEO=∠CFO,
在△AEO和△CFO中
AO=CO
∠AEO=∠CFO
∠AOE=∠COF
,
∴△AEO≌△CFO(AAS),
∴EO=FO,
∴四边形EGFH是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定;全等三角形的判定与性质.
首先根据平行四边形的性质可得AO=CO,BO=DO,AD∥BC,再证明△AEO≌△CFO,进而得到EO=FO,再加上BO=DO可根据对角线互相平分的四边形是平行四边形进行判定.
此题主要考查了平行四边形的性质与判定,关键是掌握平行四边形对角线互相平分,对角线互相平分的四边形是平行四边形.
证明题.
找相似题
(2013·牡丹江)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )
(2013·荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
(2011·张家界)顺次连接任意四边形四边中点所得的四边形一定是( )
(2010·绍兴)如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连接AD,CD,则有( )
(2009·威海)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )