试题

题目:
(2012·佛山)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是(  )



答案
A
青果学院解:这个图形一定是平行四边形,
理由是:根据题意画出图形,如右图所示:
连接AC,
∵四边形ABCD各边中点是E、F、G、H,
∴HG∥AC,HG=
1
2
AC,EF∥AC,EF=
1
2
AC,
∴EF=GH,EF∥GH,
∴四边形EFGH是平行四边形.
故选:A.
考点梳理
三角形中位线定理;平行四边形的判定.
首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG=
1
2
AC,EF∥AC,EF=
1
2
AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.
本题主要考查了平行四边形的判定,三角形的中位线,解决问题的关键是正确画出图形,证明EF=GH和EF∥GH.
找相似题