试题
题目:
M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则△ABC的周长等于
41
41
.
答案
41
解:延长线段BN交AC于E.
∵AN平分∠BAC,
∴∠BAN=∠EAN,
又∵AN=AN,∠ANB=∠ANE=90°,
∴△ABN≌△AEN,
∴AE=AB=10,BN=NE,
又∵M是△ABC的边BC的中点,
∴CE=2MN=2×3=6,
∴△ABC的周长是AB+BC+AC=10+15+10+6=41.
故答案为41.
考点梳理
考点
分析
点评
三角形中位线定理;等腰三角形的判定与性质.
延长线段BN交AC于E,易证△ABN≌△AEN,可得N为BE的中点;由已知M是BC的中点,可得MN是△BCE的中位线,由中位线定理可得CE的长,根据AC=AE+CE可得AC的长,进而得出△ABC的周长.
本题主要考查了中位线定理和全等三角形的判定及性质.解决本题的关键是作出辅助线,利用全等三角形得出线段相等,进而应用中位线定理解决问题.
找相似题
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·德阳)如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是( )
(2012·泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
(2012·南平)一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是( )
(2012·湖州)△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为( )