试题

题目:
青果学院如图,已知△ABC的周长为1,分别连接AB,BC,CA各边的中点得△A1B1C1,再连接A1B1,B1C1,C1A1的中点得△A2B2C2,…,这样延续下去,最后得△AnBnCn.那么△AnBnCn的周长等于
1
2 n
1
2 n

答案
1
2 n

解:∵△ABC的周长为1,连接AB,BC,CA各边的中点得△A1B1C1
∴△A1B1C1的周长=
1
2
△ABC的周长=
1
2
×1=
1
2

同理:△A2B2C2的周长=
1
2
△A1B1C1的周长=
1
2
×
1
2
=
1
22


以此类推,△AnBnCn的周长=
1
2
△An-1Bn-1Cn-1的周长=
1
2n

故答案为:
1
2n
考点梳理
三角形中位线定理.
根据三角形的中位线平行于第三边且等于第三边的一半,可得后一个三角形的周长等于前一个三角形的周长的一半,根据此规律进行解答.
本题考查了三角形的中位线定理,推出后一个三角形的周长等于前一个三角形周长的一半是解题的关键.
规律型.
找相似题