试题

题目:
青果学院如图,在△ABC中,D是BC中点,E是CA延长线上一点,DE交AB于F,且AE=AF.
求证:EC=BF.
答案
青果学院证明:连接CF取EF的中点为M,FC的中点为N.
则:MN=
1
2
EC,ND=
1
2
BF,
∵MN∥EC得:∠E=∠DMN,
∵DN∥AB得:∠BFD=∠FDN,
∵AE=AF,
∴∠E=∠EFA,
∵∠EFA=∠BFD,
∴∠E=∠EFA=∠BFD,
∴∠DMN=∠FDN,即MN=DN,
∴EC=BF.
青果学院证明:连接CF取EF的中点为M,FC的中点为N.
则:MN=
1
2
EC,ND=
1
2
BF,
∵MN∥EC得:∠E=∠DMN,
∵DN∥AB得:∠BFD=∠FDN,
∵AE=AF,
∴∠E=∠EFA,
∵∠EFA=∠BFD,
∴∠E=∠EFA=∠BFD,
∴∠DMN=∠FDN,即MN=DN,
∴EC=BF.
考点梳理
三角形中位线定理;全等三角形的判定与性质.
连接CF取EF的中点为M,FC的中点为N,构造三角形的中位线,利用三角形的中位线定理得到∠E=∠EFA=∠BFD,从而得到MN=DN,即EC=BF.
本题考查了三角形的中位线定理,作出辅助线,利用中位线的性质是解题的关键.
证明题.
找相似题