试题
题目:
在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.
答案
证明:∵E,F分别为AC,AB的中点,
∴EF∥BC,
根据平行线定理,∠HFE=∠FHB,∠DEF=∠CDE;
同理可证∠CDE=∠B,
∴∠DEF=∠B.
又∵AH⊥BC,且F为AB的中点,
∴HF=BF,
∴∠B=∠BHF,
∴∠HFE=∠B=∠DEF.
即∠HFE=∠DEF.
证明:∵E,F分别为AC,AB的中点,
∴EF∥BC,
根据平行线定理,∠HFE=∠FHB,∠DEF=∠CDE;
同理可证∠CDE=∠B,
∴∠DEF=∠B.
又∵AH⊥BC,且F为AB的中点,
∴HF=BF,
∴∠B=∠BHF,
∴∠HFE=∠B=∠DEF.
即∠HFE=∠DEF.
考点梳理
考点
分析
点评
三角形中位线定理.
EF为中位线,所以EF∥BC,又因为∠HFE和∠FHB,∠DEF和∠CDE分别为一组平行线的对角,所以相等;转化成求证∠FHB=∠CDE.
本题考查了三角形的中位线定理,平行四边形的判定,直角三角形中斜边的中线为斜边边长的一半.
找相似题
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·德阳)如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是( )
(2012·泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
(2012·南平)一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是( )
(2012·湖州)△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为( )