试题
题目:
如图,在四边形ABCD中,AD=BC,点P是对角线的中点,点E和点F分别是CD与AB的中点.若∠PEF=20°,则∠EPF的度数是( )
A.110°
B.120°
C.130°
D.140°
答案
D
解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,
∴FP,PE分别是△CDB与△DAB的中位线,
∴PF=
1
2
BC,PE=
1
2
AD,
∵AD=BC,
∴PF=PE,故△EPF是等腰三角形.
∴∠PEF=∠PFE=20°,
∴∠EPF=180°-2∠PEF=140°.
故选:D.
考点梳理
考点
分析
点评
三角形中位线定理;等腰三角形的判定与性质.
根据中位线定理和已知,易证明△EPF是等腰三角形,根据“等腰三角形的两个底角相等”的性质和三角形内角和定理来求∠EPF的度数.
本题考查了三角形中位线定理及等腰三角形的性质,解题时要善于根据已知信息,确定应用的知识.
找相似题
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·德阳)如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是( )
(2012·泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
(2012·南平)一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是( )
(2012·湖州)△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为( )