试题
题目:
顺次连接四边形各边中点所得的四边形是( )
A.平行四边形
B.矩形
C.菱形
D.以上都不对
答案
A
解:如图四边形ABCD,E、N、M、F分别是DA,AB,BC,DC中点,连接AC,DE,
根据三角形中位线定理可得:
EF平行且等于AC的一半,MN平行且等于AC的一半,
根据平行四边形的判定,可知四边形为平行四边形.
故选:A.
考点梳理
考点
分析
点评
三角形中位线定理.
利用三角形中位线定理可得新四边形的对边平行且等于原四边形一条对角线的一半,那么根据一组对边平行且相等的四边形是平行四边形可判定所得的四边形一定是平行四边形.
此题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为题目提供了平行线,为利用平行线判定平行四边形奠定了基础.
找相似题
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·德阳)如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是( )
(2012·泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
(2012·南平)一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是( )
(2012·湖州)△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为( )