试题
题目:
如图,D是△ABC内一点,AD=6,BC=4,E,F,G,H分别是AB,AC,CD,BD的中点,则四边形EFGH的周长是( )
A.7
B.9
C.10
D.11
答案
C,D
解:∵E、F、G、H分别是AB、AC、CD、BD的中点,
∴HG=
1
2
BC=EF,EH=FG=
1
2
AD,
∵AD=6,BC=4,
∴EF=HG=2,EH=GF=3,
∴四边形EFGH的周长是EF+FG+HG+EH=2×(2+3)=10.
故选C.
考点梳理
考点
分析
点评
三角形中位线定理.
根据三角形的中位线定理得到HG=
1
2
BC=EF,EH=FG=
1
2
AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.
本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解此题的关键.
找相似题
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·德阳)如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是( )
(2012·泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
(2012·南平)一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是( )
(2012·湖州)△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为( )