试题
题目:
如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是( )
A.SSS
B.ASA
C.SSA
D.HL
答案
D
解:∵OD=OP,OD⊥AB且OP⊥AC,
∴AO为角平分线,
∴△ADO和△OPO是直角三角形,
又∵OD=OP且AO=AO
∴△AOD≌△AOP.
故选D.
考点梳理
考点
分析
点评
直角三角形全等的判定.
先证AO为角平分线,再根据直角三角形全等的判别方法HL可证△AOD≌△AOP.
本题考查直角三角形全等的判定方法HL.
找相似题
下面关于两个直角三角形全等的判定,不正确的是( )
不能判断两个直角三角形全等的条件是( )
如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=
5或10
5或10
时,△ABC和△PQA全等.
如图,∠A=∠D=90°,再添加一个条件
AB=CD
AB=CD
,即可使Rt△ABC≌Rt△DCB,理由是
HL
HL
.
如图,△ABC和△ABD有一条公共边AB,已知∠C=∠D=90°,请添加一个条件,使△ABC≌△ABD,添加的条件是
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
.(添加一个即可)