试题
题目:
有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等.其中能判断两直角三角形全等的是( )
A.①
B.②
C.③
D.①②
答案
D
解:∵①一锐角与一边对应相等,
可利用AAS或ASA判定两直角三角形全等,
②两边对应相等,可利用HL或ASA判定两直角三角形全等;
③两锐角对应相等,缺少对应边相等这一条件,
所以不能判定两直角三角形全等.
故选D.
考点梳理
考点
分析
点评
专题
直角三角形全等的判定.
根据全等三角形的判定定理:AAS、SAS、ASA、SSS;直角三角形的判定定理HL对①②③逐个分析,然后即可得出答案.
此题主要考查学生对直角三角形全等的判定的理解和掌握,解答此题的关键是熟练掌握全等三角形的判定定理:AAS、SAS、ASA、SSS;直角三角形的判定定理HL,此题难度不大,是一道基础题.
证明题.
找相似题
下面关于两个直角三角形全等的判定,不正确的是( )
不能判断两个直角三角形全等的条件是( )
如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=
5或10
5或10
时,△ABC和△PQA全等.
如图,∠A=∠D=90°,再添加一个条件
AB=CD
AB=CD
,即可使Rt△ABC≌Rt△DCB,理由是
HL
HL
.
如图,△ABC和△ABD有一条公共边AB,已知∠C=∠D=90°,请添加一个条件,使△ABC≌△ABD,添加的条件是
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
.(添加一个即可)