试题
题目:
如图,AC=BC,∠ACB=90°,D为BC的中点,BE⊥BC,CE⊥AD,垂足分别为B、G,那么AD=CE,BD=BE.这个结论对不对?为什么?
答案
解:这2个结论都是对的.理由:
∵∠ACB=90°,CE⊥AD,
∴∠ACB=∠EBC=90°,
∠GCD+∠ACG=90°,∠ACG+∠CAD=90°
∴∠ECB=∠CAD,而AC=BC,
∴△ACD≌Rt△CBE,
∴AD=CE,CD=BE.
∵点D为BC的中点,
∴CD=BD,
∴BD=BE.
解:这2个结论都是对的.理由:
∵∠ACB=90°,CE⊥AD,
∴∠ACB=∠EBC=90°,
∠GCD+∠ACG=90°,∠ACG+∠CAD=90°
∴∠ECB=∠CAD,而AC=BC,
∴△ACD≌Rt△CBE,
∴AD=CE,CD=BE.
∵点D为BC的中点,
∴CD=BD,
∴BD=BE.
考点梳理
考点
分析
点评
专题
直角三角形全等的判定;全等三角形的性质.
AD=CE,BD=BE两个结论都是正确的.根据三角形ACB是等腰直角三角形可以找到全等条件证明Rt△ACD≌Rt△CBE,然后利用全等三角形的性质可以得到这两个结论.
此题首先利用等腰直角三角形的性质来构造证明全等三角形的全等条件,然后利用全等三角形的性质得到题目的结论.
探究型.
找相似题
下面关于两个直角三角形全等的判定,不正确的是( )
不能判断两个直角三角形全等的条件是( )
如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=
5或10
5或10
时,△ABC和△PQA全等.
如图,∠A=∠D=90°,再添加一个条件
AB=CD
AB=CD
,即可使Rt△ABC≌Rt△DCB,理由是
HL
HL
.
如图,△ABC和△ABD有一条公共边AB,已知∠C=∠D=90°,请添加一个条件,使△ABC≌△ABD,添加的条件是
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
.(添加一个即可)