试题
题目:
(2005·河南)如图,△ABC中,∠ABC=45°,AD⊥BC于D,点E在上AD,且DE=CD,求证:BE=AC.
答案
证明:∵∠ABC=45°,AD⊥BC,
∴AD=BD,∠BDE=∠ADC=90°.
又∵DE=CD,
∴△BDE≌△ADC.
∴BE=AC.
证明:∵∠ABC=45°,AD⊥BC,
∴AD=BD,∠BDE=∠ADC=90°.
又∵DE=CD,
∴△BDE≌△ADC.
∴BE=AC.
考点梳理
考点
分析
点评
专题
直角三角形全等的判定;全等三角形的性质.
由∠ABC=45°,AD⊥BC可得到AD=BD,又知DE=CD,所以△BDE≌△ADC,从而得出BE=AC.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.发现并利用BD=AD是正确解决本题的关键.
证明题.
找相似题
下面关于两个直角三角形全等的判定,不正确的是( )
不能判断两个直角三角形全等的条件是( )
如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=
5或10
5或10
时,△ABC和△PQA全等.
如图,∠A=∠D=90°,再添加一个条件
AB=CD
AB=CD
,即可使Rt△ABC≌Rt△DCB,理由是
HL
HL
.
如图,△ABC和△ABD有一条公共边AB,已知∠C=∠D=90°,请添加一个条件,使△ABC≌△ABD,添加的条件是
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
.(添加一个即可)