试题
题目:
如图,已知AB⊥BD,AB∥ED,AB=ED,要说明△ABC≌△EDC,若以“SAS”为依据,还要添加的条件为
BC=DC
BC=DC
;若添加条件AC=EC,则可以用
HL
HL
公理(或定理)判定全等.
答案
BC=DC
HL
解:∵AB⊥BD,AB∥ED,
∴ED⊥BD,
∴∠B=∠D=90°;
①又∵AB=ED,
∴在△ABC和△EDC中,
当BC=DC时,
△ABC≌△EDC(SAS);
②在Rt△ABC和△Rt△EDC中,
AB=ED
AC=EC
,
∴Rt△ABC≌Rt△EDC(HL);
故答案分别是:BC=DC、HL.
考点梳理
考点
分析
点评
全等三角形的判定;直角三角形全等的判定.
根据已知条件知∠B=∠D=90°.若以“SAS”为依据判定△ABC≌△EDC,结合已知条件缺少对应边BC=DC;若添加条件AC=EC,则可以利用直角三角形全等的判定定理证明△ABC≌△EDC.
本题综合考查了全等三角形的判定、直角三角形的全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
找相似题
下面关于两个直角三角形全等的判定,不正确的是( )
不能判断两个直角三角形全等的条件是( )
如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=
5或10
5或10
时,△ABC和△PQA全等.
如图,∠A=∠D=90°,再添加一个条件
AB=CD
AB=CD
,即可使Rt△ABC≌Rt△DCB,理由是
HL
HL
.
如图,△ABC和△ABD有一条公共边AB,已知∠C=∠D=90°,请添加一个条件,使△ABC≌△ABD,添加的条件是
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD
.(添加一个即可)