题目:
(2010·龙岩)某校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.
(1)A、B两种篮球单价各多少元?
(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A、B两种篮球的个数及所需费用.
答案
解:(1)设A种篮球每个x元,B种篮球每个y元(1分)
依题意得,
,(3分)
解得
,(4分)
答:A种篮球每个50元,B种篮球每个30元;(5分)
(2)设购买A种篮球m个,则购买B种篮球(20-m)个(1分)
依题意,得
(2分)
解得8≤m≤10(3分)
∵篮球的个数必须为整数
∴m只能取8、9、10(4分)
可分别设计出如下三种方案:
方案①:当m=8时,20-m=12,
50×8+30×12=760,
答:购买A种篮球8个,B种篮球12个,费用共计760元(5分)
方案②:当m=9时,20-m=11,
50×9+30×11=780(元)
答:购买A种篮球9个,B种篮球11个,费用共计780元(6分)
方案③:当m=10时,20-m=10,
50×10+30×10=800(元)
答:购买A种篮球10个,B种篮球10个,费用共计800元(7分).
解:(1)设A种篮球每个x元,B种篮球每个y元(1分)
依题意得,
,(3分)
解得
,(4分)
答:A种篮球每个50元,B种篮球每个30元;(5分)
(2)设购买A种篮球m个,则购买B种篮球(20-m)个(1分)
依题意,得
(2分)
解得8≤m≤10(3分)
∵篮球的个数必须为整数
∴m只能取8、9、10(4分)
可分别设计出如下三种方案:
方案①:当m=8时,20-m=12,
50×8+30×12=760,
答:购买A种篮球8个,B种篮球12个,费用共计760元(5分)
方案②:当m=9时,20-m=11,
50×9+30×11=780(元)
答:购买A种篮球9个,B种篮球11个,费用共计780元(6分)
方案③:当m=10时,20-m=10,
50×10+30×10=800(元)
答:购买A种篮球10个,B种篮球10个,费用共计800元(7分).