试题

题目:
(2011·眉山)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.
(1)求运往两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?
(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:
A地 B地 C地
运往D地(元/立方米) 22 20 20
运往E地(元/立方米) 20 22 21
在(2)的条件下,请说明哪种方案的总费用最少?
答案
解:(1)设运往E地x立方米,由题意得,x+2x-10=140,
解得:x=50,
∴2x-10=90.
答:共运往D地90立方米,运往E地50立方米;

(2)由题意可得,
90-(a+30)<2a
50-[90-(a+30)]≤12

解得:20<a≤22,
∵a是整数,
∴a=21或22,
∴有如下两种方案:
第一种:A地运往D地21立方米,运往E地29立方米;
C地运往D地39立方米,运往E地11立方米;
第二种:A地运往D地22立方米,运往E地28立方米;
C地运往D地38立方米,运往E地12立方米;

(3)第一种方案共需费用:
22×21+20×29+39×20+11×21=2053(元),
第二种方案共需费用:
22×22+28×20+38×20+12×21=2056(元),
所以,第一种方案的总费用最少.
解:(1)设运往E地x立方米,由题意得,x+2x-10=140,
解得:x=50,
∴2x-10=90.
答:共运往D地90立方米,运往E地50立方米;

(2)由题意可得,
90-(a+30)<2a
50-[90-(a+30)]≤12

解得:20<a≤22,
∵a是整数,
∴a=21或22,
∴有如下两种方案:
第一种:A地运往D地21立方米,运往E地29立方米;
C地运往D地39立方米,运往E地11立方米;
第二种:A地运往D地22立方米,运往E地28立方米;
C地运往D地38立方米,运往E地12立方米;

(3)第一种方案共需费用:
22×21+20×29+39×20+11×21=2053(元),
第二种方案共需费用:
22×22+28×20+38×20+12×21=2056(元),
所以,第一种方案的总费用最少.
考点梳理
一元一次不等式组的应用;一元一次方程的应用.
(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;
(2)由题意列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;
(3)根据(1)中的两种方案求出其费用即可.
本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.
优选方案问题.
找相似题