题目:

如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.
(1)求证:△OCD是等边三角形;
(2)当α=150°时,试判断△AOD 的形状,并说明理由;
(3)探究:当α为多少度时,△AOD是等腰三角形.
答案
解:(1)∵△BOC≌△ADC,
∴OC=DC.--(1分)
∵∠OCD=60°,
∴△OCD是等边三角形.--(1分)
(2)△AOD是Rt△.--(1分)
理由如下:
∵△OCD是等边三角形,
∴∠ODC=60°,
∵△BOC≌△ADC,∠α=150°,
∴∠ADC=∠BOC=∠α=150°,
∴∠ADO=∠ADC-∠ODC=150°-60°=90°,
∴△AOD是Rt△.--(2分)
(3)∵△OCD是等边三角形,
∴∠COD=∠ODC=60°.
∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α,
∠ADO=∠ADC-∠ODC=α-60°,
∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.
①当∠AOD=∠ADO时,190°-α=α-60°,
∴α=125°.--(2分)
②当∠AOD=∠OAD时,190°-α=50°,
∴α=140°.--(2分)
③当∠ADO=∠OAD时,
α-60°=50°,
∴α=110°.--(2分)
综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.--(1分)
解:(1)∵△BOC≌△ADC,
∴OC=DC.--(1分)
∵∠OCD=60°,
∴△OCD是等边三角形.--(1分)
(2)△AOD是Rt△.--(1分)
理由如下:
∵△OCD是等边三角形,
∴∠ODC=60°,
∵△BOC≌△ADC,∠α=150°,
∴∠ADC=∠BOC=∠α=150°,
∴∠ADO=∠ADC-∠ODC=150°-60°=90°,
∴△AOD是Rt△.--(2分)
(3)∵△OCD是等边三角形,
∴∠COD=∠ODC=60°.
∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α,
∠ADO=∠ADC-∠ODC=α-60°,
∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.
①当∠AOD=∠ADO时,190°-α=α-60°,
∴α=125°.--(2分)
②当∠AOD=∠OAD时,190°-α=50°,
∴α=140°.--(2分)
③当∠ADO=∠OAD时,
α-60°=50°,
∴α=110°.--(2分)
综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.--(1分)