答案
证明:∵AF平分∠BAC,
∴∠CAD=∠DAB=
∠BAC,
∵BC⊥AF,点D与点A关于点E对称,
∴BC是AD的垂直平分线,
∴AC=CD,
∵∠CAD+∠ACE=∠DAB+∠ABE=180°-90°=90°,
∴∠ABE=∠ACE,
∴AB=AC,
∴AB=CD.
证明:∵AF平分∠BAC,
∴∠CAD=∠DAB=
∠BAC,
∵BC⊥AF,点D与点A关于点E对称,
∴BC是AD的垂直平分线,
∴AC=CD,
∵∠CAD+∠ACE=∠DAB+∠ABE=180°-90°=90°,
∴∠ABE=∠ACE,
∴AB=AC,
∴AB=CD.