试题
题目:
如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A.
答案
证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),
∵CD⊥AB,
∴∠CDB=90°,
∴∠BCD+∠B=90°(直角三角形两锐角互余),
∴∠A=∠BCD(同角的余角相等).
证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),
∵CD⊥AB,
∴∠CDB=90°,
∴∠BCD+∠B=90°(直角三角形两锐角互余),
∴∠A=∠BCD(同角的余角相等).
考点梳理
考点
分析
点评
专题
直角三角形的性质.
根据直角三角形两锐角互余,∠A+∠B=90°,再根据CD是斜边AB的高,∠B+∠BCD=90°,然后利用同角的余角相等即可得证.
本题主要利用直角三角形两锐角互余的性质和同角的余角相等的性质,熟练掌握性质是解题的关键.
证明题.
找相似题
(2012·漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )
(2012·临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )
(2012·衡阳)如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2010·泰安)如图,l
1
∥l
2
,l
3
⊥l
4
,∠1=42°,那么∠2的度数为( )