试题
题目:
如图,AD⊥BC,∠BAD=∠B,∠C=65°,则∠BAC=
70°
70°
.
答案
70°
解:如图,∵AD⊥BC,
∴∠ADB=90°,
又∵∠BAD=∠B,
∴∠BAD=∠B=45°.
在直角△ADC中,∠DAC=90°-∠C=90°-65°=25°,
∴∠BAC=∠BAD+∠DAC=45°+25°=70°.
故答案是:70°.
考点梳理
考点
分析
点评
直角三角形的性质.
由等腰直角△ABD的性质求得∠BAD=45°;然后利用直角△ADC的两个锐角互余的性质求得∠DAC=25°,则易求∠BAC的度数.
本题考查了直角三角形的性质.解题时利用了“直角三角形的两个锐角互余的性质”,当然,利用三角形内角和定理也可以解答该题.
找相似题
(2012·漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )
(2012·临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )
(2012·衡阳)如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2010·泰安)如图,l
1
∥l
2
,l
3
⊥l
4
,∠1=42°,那么∠2的度数为( )