试题
题目:
(2002·广州)过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是
70°
70°
.
答案
70°
解:如图,依题意得∠ACD=40°,∠DCB=20°,
而CD⊥AB于D,
∴∠A=50°,∠B=70°,
因而∠A、∠B中较大的角的度数是70°.
故填空答案:70°.
考点梳理
考点
分析
点评
直角三角形的性质.
根据直角三角形两锐角互余可以得到,∠A、∠B中有一个是70°,另一个是50°,因而∠A、∠B中较大的角的度数是70°.
本题主要考查的是直角三角形两锐角互余的性质,比较简单.
找相似题
(2012·漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )
(2012·临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )
(2012·衡阳)如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2010·泰安)如图,l
1
∥l
2
,l
3
⊥l
4
,∠1=42°,那么∠2的度数为( )