试题
题目:
如图,已知直角△ABC中,∠BAC=90°,∠B=56°,AD⊥BC,DE∥CA.∠ADE的度数为( )
A.56°
B.34°
C.44°
D.46°
答案
A
解:∵∠BAC=90°,DE∥AC(已知)
∴∠DEA=180°-∠BAC=90°(两直线平行,同旁内角互补).
∵AD⊥BC,∠B=56°,
∴∠BAD=34°,
在△ADE中,∵DE⊥AB,
∴∠ADE=56°.
故选A.
考点梳理
考点
分析
点评
直角三角形的性质;平行线的性质.
根据平行线的性质推知△AED是直角三角形;在直角△ABD中,利用“直角三角形的两个锐角互余的性质”求得∠BAD=34°;然后在直角△AED中,利用“直角三角形的两个锐角互余的性质”求得∠ADE的度数.
本题考查了平行线的性质,直角三角形的性质.直角三角形的两个锐角互余.
找相似题
(2012·漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )
(2012·临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )
(2012·衡阳)如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2010·泰安)如图,l
1
∥l
2
,l
3
⊥l
4
,∠1=42°,那么∠2的度数为( )