试题
题目:
如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是( )
A.图中有三个直角三角形
B.∠1=∠2
C.∠1和∠B都是∠A的余角
D.∠2=∠A
答案
B
解:∵∠ACB=90°,CD⊥AB,垂足为D,
∴△ACD∽△CBD∽△ABC.
A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;
B、应为∠1=∠B、∠2=∠A;故本选项错误;
C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;
D、∴∠2=∠A;故本选项正确.
故选B.
考点梳理
考点
分析
点评
专题
直角三角形的性质.
在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.
本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.
证明题.
找相似题
(2012·漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )
(2012·临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )
(2012·衡阳)如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2010·泰安)如图,l
1
∥l
2
,l
3
⊥l
4
,∠1=42°,那么∠2的度数为( )