试题
题目:
如果△ABC∽△DEF,且相似比为
1
2
,那么△DEF和△ABC的面积比为( )
A.
1
4
B.
1
2
C.4
D.2
答案
C
解:∵△ABC∽△DEF,且相似比为
1
2
,
∴△DEF和△ABC的面积比为2
2
=4.
故选C.
考点梳理
考点
分析
点评
相似三角形的性质.
根据相似三角形的面积比等于相似比的平方,即可得出两个相似三角形的面积比.
此题主要考查的是相似三角形的性质:相似三角形的对应边的比等于相似比,面积比等于相似比的平方,要注意两个三角形的相似比与三角形的有先后顺序有关.
找相似题
把一个三角形放大成和它相似的三角形,如果边长扩大为原来的10倍,那么,面积扩大为原来的
100
100
倍;如果面积扩大为原来的10倍,那么,边长扩大为原来的
10
10
倍.
已知△ABC∽△A′B′C′,且它们的周长比为1:2,它们的面积比为
1:4
1:4
.
如图,△ABC∽△ADE,若∠ADE=∠B,那么∠C=
∠AED
∠AED
,
DE
BC
=
AD
AB
AD
AB
=
AE
AC
AE
AC
.
Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,AB=3,BC=2,A′B′=12,则B′C′=
8
8
.
(易错题)写出下列各组相似三角形的对应边的比例式.
(1)若△ABE∽△CDE,则
AB
CD
=
AE
CE
=
BE
DE
AB
CD
=
AE
CE
=
BE
DE
;
(2)若△ABC∽△DCA,则
AB
CD
=
AC
DA
=
BC
CA
AB
CD
=
AC
DA
=
BC
CA
.