试题
题目:
如图,小正方形的边长均为1,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图5×5的方格中,作格点三角形和△ABC相似,则所作的格点三角形中,最小面积和最大面积分别为( )
A.0.5,2.5
B.0.5,5
C.1,2.5
D.1,5
答案
B
解:如图所示,△DEF和△GHI分别是面积最小和面积最大的三角形.
因为△DEF,△GHI和△ABC都相似,AB=
2
,DE=1,GH=
10
,
所以它们的相似比为DE:AB=1:
2
,GH:AB=
10
:
2
,
又因为相似三角形的面积比等于相似比的平方,而△ABC的面积为
1
2
×
2×1=1,
故△DEF和△GHI面积分别为0.5,5.故选B.
考点梳理
考点
分析
点评
专题
相似三角形的性质;勾股定理.
作出面积最小和面积最大的格点三角形,因为相似三角形的面积比等于相似比的平方,所以此题只要求得两三角形的一组对应边的比即可.根据格点三角形边长的求解方法,易得AB,DE与GH的长.即可得出问题的解.
此题考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.解此题还要注意格点三角形边长的求解方法:用勾股定理求解.
网格型.
找相似题
把一个三角形放大成和它相似的三角形,如果边长扩大为原来的10倍,那么,面积扩大为原来的
100
100
倍;如果面积扩大为原来的10倍,那么,边长扩大为原来的
10
10
倍.
已知△ABC∽△A′B′C′,且它们的周长比为1:2,它们的面积比为
1:4
1:4
.
如图,△ABC∽△ADE,若∠ADE=∠B,那么∠C=
∠AED
∠AED
,
DE
BC
=
AD
AB
AD
AB
=
AE
AC
AE
AC
.
Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,AB=3,BC=2,A′B′=12,则B′C′=
8
8
.
(易错题)写出下列各组相似三角形的对应边的比例式.
(1)若△ABE∽△CDE,则
AB
CD
=
AE
CE
=
BE
DE
AB
CD
=
AE
CE
=
BE
DE
;
(2)若△ABC∽△DCA,则
AB
CD
=
AC
DA
=
BC
CA
AB
CD
=
AC
DA
=
BC
CA
.