试题
题目:
(2014·闸北区一模)一个边长为3厘米的正方形,若它的边长增加x厘米,面积随之增加y平方厘米,则y关于x的函数解析式是
y=x
2
+6x
y=x
2
+6x
.(不写定义域)
答案
y=x
2
+6x
解:原边长为3厘米的正方形面积为:3×3=9(平方厘米),
边长增加x厘米后边长变为:x+3,
则面积为:(x+3)
2
平方厘米,
∴y=(x+3)
2
-9=x
2
+6x.
故答案为:y=x
2
+6x.
考点梳理
考点
分析
点评
根据实际问题列二次函数关系式.
首先表示出原边长为3厘米的正方形面积,再表示出边长增加x厘米后正方形的面积,再根据面积随之增加y平方厘米可列出方程.
此题主要考查了根据实际问题列二次函数关系式,关键是正确表示出正方形的面积.
找相似题
(2010·丽水)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )
(2007·自贡)进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为( )
(2005·甘肃)如图,半圆O的直径AB=4,与半圆O内切的动圆O
1
与AB切于点M,设⊙O
1
的半径为y,AM=x,则y关于x的函数关系式是( )
喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为y元,则y与x的函数解析式为( )
(2006·宝安区二模)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是( )