试题
题目:
如图,⊙O是△ABC的内切圆,∠C=90°,AB=8,∠BOC=105°,则BC的长为
4
4
.
答案
4
解:∵⊙O是△ABC的内切圆,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∵∠BOC=105°,
∴∠OBC+∠OCB=180°-105°=75°,
∴∠ABC+∠ACB=2×75°=150°,
∴∠A=180°-(∠ABC+∠ACB)=30°,
∵∠C=90°,AB=8,
∴BC=
1
2
AB=4,
故答案为:4.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
根据三角形内角和定理求出∠OBC+∠OCB,根据三角形内切圆求出∠ABC+∠ACB,根据三角形内角和定理求出∠A,根据含30度角的直角三角形性质求出即可.
本题考查了三角形内角和定理,三角形内切圆,含30度角的直角三角形性质的应用,关键是求出∠A的度数和得出BC=
1
2
AB.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )