试题
题目:
三角形内角平分线的交点为三角形的内心.如图,D是△ABC的内心,E是△ABD的内心,F是△BDE的内心.若∠BFE的度数为整数,则∠BFE至少是
113
113
°.
答案
113
解:∵D是△ABC的内心,E是△ABD的内心,F是△DBE的内心,
∴∠BDE=
1
2
∠ADB,∠ADB=90°+
∠C
2
,∠BED=90°+
∠BAD
2
,∠BFE=90°+
∠BDE
2
,
∴∠BFE=90°+
∠BDE
2
=90°+
1
4
∠ADB=90°+
1
4
(90°+
1
2
∠C)=112.5°+
1
8
∠C,
∵∠BFE的度数为整数,
∴当∠C=4°时,∠BFE=113°最小,
故答案为113°.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
首先由三角形内角的性质,求得,∠ADB=90°+
∠C
2
,∠BED=90°+
∠BAD
2
,∠BFE=90°+
∠BDE
2
,又由∠BFE的度数为整数,即可求得∠BEF的最小值.
此题考查了三角形内心的性质.注意三角形的内心即是三角形角平分线的交点.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )