试题
题目:
△ABC的内切圆半径为r,△ABC的周长为l,则△ABC的面积为
1
2
r
l
1
2
r
l
.
答案
1
2
r
l
解:由题意,如图,连接OE,OD,OF;OA,OB,OC;
则OE⊥AB,OF⊥AC,OD⊥BC;
∴S
△ABC
=
1
2
AB×OE+
1
2
BC×OD+
1
2
AC×OF
∵OE=OF=OD=r,AB+BC+AC=l,
∴S
△ABC
=
1
2
AB×r+
1
2
BC×r+
1
2
AC×r=
1
2
r
(AB+BC+AC)
=
1
2
r
l.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
如图,连接圆心和切点,则可得到垂直关系,将图形分割成三个三角形,求三个三角形的面积和即可.
本题解答的关键是,充分利用已知条件,将问题转化为求几个三角形面积的和.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )