试题
题目:
已知点I是△ABC的内心,∠BIC=110°,则∠BAC=
40°
40°
;若O是△ABC的外心,∠BOC=110°,则∠BAC=
55°或125°
55°或125°
.
答案
40°
55°或125°
解:∵∠B+∠C=2(180°-∠BIC)=140°,
∴∠BAC=180°-140°=40°;
当△ABC是锐角三角形时,∠BAC=
1
2
∠BOC=110°×
1
2
=55°;
当△ABC是顿角三角形时,∠BAC=180°-55°=125°.
故答案为:40°;55°或125°.
考点梳理
考点
分析
点评
三角形的外接圆与外心;三角形的内切圆与内心.
(1)I是△ABC的内心,求出角B和角C的和,再利用三角形内角关系,求出∠BAC.
(2)利用圆周角是圆心角的一半即可得出答案.
考查了三角形内角和以及内心,外心的性质.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )