试题
题目:
在△ABC中,∠BAC=50°,若O是△ABC的外心,∠BOC=
100°
100°
;若O是内心,则∠BOC=
115°
115°
.
答案
100°
115°
解:由于点O是△ABC的外心,所以在△ABC的外接圆⊙O中,
∠BAC、∠BOC同对着弧BC;
由圆周角定理得:∠BOC=2∠BAC=100°,
故答案为:100°;
∵O是△ABC的内心,
∴OB,OC分别平分∠ABC,∠ACB,
∴∠OBC+∠OCB=
180°-50°
2
=65°,
∴∠BOC=180°-65°=115°.
故答案为:115°.
考点梳理
考点
分析
点评
三角形的内切圆与内心;三角形的外接圆与外心.
已知了点O是△ABC的外心,那么∠A、∠BOC即为同弧所对的圆周角和圆心角,根据圆周角定理即可得到∠BOC的度数;利用内心的定义,OB,OC都是角平分线,因此可求出∠OBC与∠OCB的和,从而得到∠BOC的度数.
此题主要考查了三角形的外接圆以及圆周角定理的相关知识和理解三角形内心的定义,记住三角形内角和定理是解题的关键.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )