试题
题目:
如图,⊙O是△ABC的内切圆,切点为D、E、F,若∠A=100°,∠C=30°,则∠DFE的度数是
65°
65°
.
答案
65°
解:连接OD、OE,
∵⊙O是△ABC的内切圆,切点为D、E、F,
∴OD⊥AB,OE⊥BC,
∴∠ODB=∠OEB=90°,
∵∠A=100°,∠C=30°,
∴∠B=180°-∠A-∠C=50°,
∵∠B+∠ODB+∠OEB+∠EOD=360°,
∴∠EOD=130°,
∵∠DFE=
1
2
∠EOD=
1
2
×130°=65°.
故答案为:65°.
考点梳理
考点
分析
点评
专题
三角形的内切圆与内心;三角形内角和定理;多边形内角与外角;圆周角定理.
连接OD、OE,根据⊙O是△ABC的内切圆得出∠ODB=∠OEB=90°,根据三角形的内角和定理求出∠B,根据多边形的内角和定理求出∠EOD,根据圆周角定理求出即可.
本题主要考查对三角形的内切圆与内心,三角形的内角和定理,多边形的内角和定理,圆周角定理等知识点的理解和掌握,能根据这些性质求出∠DOE的度数数解此题的关键.
计算题.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )