试题
题目:
(2012·犍为县模拟)请你用作图的方法来表示:已知△ABC的内心、外心分别到点A的距离之差.(不用写出作图步骤,但要保留作图痕迹和适当的文字说明.)
答案
解:作出△ABC的内心O
1
;
作出△ABC的外心O
2
;
作出线段DO
2
,连接AO
2
,以点A为圆心,AO
1
为半径画弧,交AO
2
于点D,那么如图所示,线段DO
2
的长就是△ABC的内心、外心分别到点A的距离之差.
解:作出△ABC的内心O
1
;
作出△ABC的外心O
2
;
作出线段DO
2
,连接AO
2
,以点A为圆心,AO
1
为半径画弧,交AO
2
于点D,那么如图所示,线段DO
2
的长就是△ABC的内心、外心分别到点A的距离之差.
考点梳理
考点
分析
点评
作图—复杂作图;三角形的外接圆与外心;三角形的内切圆与内心.
先利用尺规作图作出三角形的内心:先作出任意两个角的角平分线,其交点即为内心;
再利用尺规作图作出三角形的外心:先作出任意两条边的垂直平分线,其交点即为外心;
然后即可求出距离之差.
用到的知识点为:外心是三角形各边垂直平分线的交点,到每个顶点的距离相等;内心是三角形每个角的角平分线的交点,到三边距离相等.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )