试题
题目:
(2012·连云港一模)某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD垂直平分BC,AD=BC=40cm,则圆柱形饮水桶的底面半径的最大值是
25
25
cm.
答案
25
解:连接OB,如图,
当⊙O为△ABC的外接圆时圆柱形饮水桶的底面半径的最大.
∵AD垂直平分BC,AD=BC=40cm,
∴O点在AD上,BD=20cm;
在Rt△0BD中,设半径为r,则OB=r,OD=40-r,
∴r
2
=(40-r)
2
+20
2
,解得r=25.
即圆柱形饮水桶的底面半径的最大值为25cm.
故答案为25.
考点梳理
考点
分析
点评
专题
三角形的内切圆与内心.
当圆柱形饮水桶的底面半径最大时,圆外接于△ABC;连接外心与B点,可通过勾股定理即可求出圆的半径.
此题考查把实物图转化为几何图形的能力以及垂径定理的讨论和勾股定理.
应用题;压轴题.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )