试题
题目:
已知:如图,P是△ABC的内心,过P点作△ABC的外接圆的弦AE,交BC于D点.求证:BE=PE.
答案
证明:∵P是△ABC的内心,
∴∠1=∠2,∠3=∠4,
又∵∠2=∠5,
∴∠1=∠5.
∵∠BPE=∠1+∠3,∠PBE=∠4+∠5,
∴∠BPE=∠PBE,
∴BE=PE.
证明:∵P是△ABC的内心,
∴∠1=∠2,∠3=∠4,
又∵∠2=∠5,
∴∠1=∠5.
∵∠BPE=∠1+∠3,∠PBE=∠4+∠5,
∴∠BPE=∠PBE,
∴BE=PE.
考点梳理
考点
分析
点评
专题
三角形的内切圆与内心;圆周角定理.
连接BP,根据三角形的一个外角等于与它不相邻的两个内角的和,以及圆周角定理和内心的性质,即可证得:∠BPE=∠PBE,然后根据等角对等边即可证得:BE=PE.
本题考查了三角形的内心的性质,以及圆周角的性质,三角形的外角的性质,以及等腰三角形的判定方法:等角对等边,正确证得∠BPE=∠PBE是关键.
证明题.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )