试题

题目:
青果学院(2011·天河区一模)如图,已知△ABC中,∠B=60°,点D是△ABC的内心,则∠CDA的度数为
120度
120度

答案
120度

解:如图,∵D是△ABC的内心,
∴AD、CD 分别平分∠BCA、∠BAC,
∴∠DCA=
1
2
∠BCA,∠DAC=
1
2
∠BAC,
而∠DAC=180°-∠DCA-∠DAC,
∴∠DAC=180°-
1
2
∠BCA-
1
2
∠BAC,
=180°-
1
2
(∠BCA+∠BAC),
=180°-
1
2
(180°-∠B),
=90°+
1
2
∠B,
而∠B=60°,
∴∠CDA=120°.
故答案为:120.
考点梳理
三角形的内切圆与内心.
由于D是△ABC的内心,那么AD、CD 分别平分∠BCA、∠BAC,而∠DAC=180°-∠DCA-∠DAC,然后理由角平分线的性质和三角形内角和定理即可求解.
此题考查了三角形的内心的性质及三角形的内角和定理,解题时首先理由内心性质得到角平分线,然后理由角平分线的性质和三角形内角和定理解决问题.
找相似题