试题
题目:
(2010·泸州)如图,已知⊙O是边长为2的等边△ABC的内切圆,则⊙O的面积为
π
3
π
3
.
答案
π
3
解:设BC切⊙O于点D,连接OC、OD;
∵CA、CB都与⊙O相切,
∴∠OCD=∠OCA=30°;
Rt△OCD中,CD=
1
2
BC=1,∠OCD=30°;
∴OD=CD·tan30°=
3
3
;
∴S⊙O=π(OD)
2
=
π
3
.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
欲求⊙O的面积,需先求出⊙O的半径;可连接OC,由切线长定理可得到∠OCB=∠OCA=30°,再连接OD(设BC切⊙O于D),在Rt△OCD中通过解直角三角形即可求得⊙O的半径,进而可求出⊙O的面积.
此题主要考查了三角形内切圆、切线长定理及解直角三角形等知识的综合应用.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )