试题
题目:
如图,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,则∠DOE=( )
A.70°
B.110°
C.120°
D.130°
答案
B
解:∵∠BAC=50°,∠ACB=60°,∴∠B=180°-50°-60°=70°,
∵E,F是切点,
∴∠BDO=∠BEO=90°,
∴∠DOE=180°-∠B,∴∠DOE=∠A+∠C=50°+60°=110°.
故选:B.
考点梳理
考点
分析
点评
三角形的内切圆与内心;切线的性质.
先根据三角形的内角和定理求得∠B,再由切线的性质得∠BDO=∠BEO=90°,从而得出∠DOE.
此题考查了三角形的内切圆和切线长定理,是基础知识要熟练掌握,根据已知得出∠DOE=180°-∠B是解题关键.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )