试题
题目:
如图,Rt△ABC中,∠C=90°,⊙O内切△ABC于点D、E、F,AD=2cm,BD=3cm,则⊙O的半径为( )
A.6cm
B.3cm
C.2cm
D.1cm
答案
D
解:连接OD、OE、OF,由切线长定理可得AD=AF,BD=BE,CE=CF,
∵AD=2cm,BD=3cm,
∴AD=AF=2cm,BD=BE=3cm,
∵OE⊥BC,OF⊥AC,∠C=90°,OF=OE,
∴四边形OEFC是正方形,
设CE=x,则AC=AF+CF=2+x,BC=BE+CE=3+x,
在Rt△ABC中,AB
2
=AC
2
+BC
2
,即(2+3)
2
=(2+x)
2
+(3+x)
2
,
解得x=1cm或x=-6cm(舍去).
故选D.
考点梳理
考点
分析
点评
专题
三角形的内切圆与内心.
连接OD、OE、OF,由切线长定理可得AD=AF,BD=BE,CE=CF,根据正方形的判定定理可求出四边形OEFC是正方形,设CE=x,由勾股定理即可求解.
本题考查的是三角形的内切圆与内心、切线长定理及勾股定理、正方形的判定与性质,根据题意作出辅助线是解答此题的关键.
探究型.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2006·眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·杭州)给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有( )