试题
题目:
(2009·荆门)函数y=ax+1与y=ax
2
+bx+1(a≠0)的图象可能是( )
A.
B.
C.
D.
答案
C
解:当a>0时,函数y=ax
2
+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;
当a<0时,函数y=ax
2
+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;
当x=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.
正确的只有C.
故选C.
考点梳理
考点
分析
点评
二次函数的图象;一次函数的图象.
根据a的符号,分类讨论,结合两函数图象相交于(0,1),逐一排除;
应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
找相似题
(2013·雅安)二次函数y=ax
2
+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=
c
x
在同一平面直角坐标系中的大致图象为( )
(2013·泰安)在同一坐标系内,一次函数y=ax+b与二次函数y=ax
2
+8x+b的图象可能是( )
(2013·齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x
2
+1与y=
3
x
的交点的横坐标x
0
的取值范围是( )
(2013·聊城)二次函数y=ax
2
+bx的图象如图所示,那么一次函数y=ax+b的图象大致是( )
(2013·呼和浩特)在同一直角坐标系中,函数y=mx+m和y=-mx
2
+2x+2(m是常数,且m≠0)的图象可能是( )