试题
题目:
两个相似三角形对应的中线长分别是6cm和18cm,若较大三角形的周长是42cm,面积是12cm
2
,则较小三角形的周长为
14
14
cm,面积为
4
3
4
3
cm
2
.
答案
14
4
3
解:∵两个相似三角形对应的中线长分别是6cm和18cm,
∴此相似三角形的相似比为:6:18=1:3;
∴此相似三角形的周长比为:1:3,面积比为:1:9,
∵较大三角形的周长是42cm,面积是12cm
2
,
∴较小三角形的周长为:42×
1
3
=14(cm),面积为:12×
1
9
=
4
3
(cm
2
).
故答案为:14,
4
3
.
考点梳理
考点
分析
点评
相似三角形的性质.
由两个相似三角形对应的中线长分别是6cm和18cm,可得此相似三角形的相似比为:6:18=1:3;即可得此相似三角形的周长比为:1:3,面积比为:1:9,又由较大三角形的周长是42cm,面积是12cm
2
,即可求得答案.
此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的面积的比等于相似比的平方.
找相似题
把一个三角形放大成和它相似的三角形,如果边长扩大为原来的10倍,那么,面积扩大为原来的
100
100
倍;如果面积扩大为原来的10倍,那么,边长扩大为原来的
10
10
倍.
已知△ABC∽△A′B′C′,且它们的周长比为1:2,它们的面积比为
1:4
1:4
.
如图,△ABC∽△ADE,若∠ADE=∠B,那么∠C=
∠AED
∠AED
,
DE
BC
=
AD
AB
AD
AB
=
AE
AC
AE
AC
.
Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,AB=3,BC=2,A′B′=12,则B′C′=
8
8
.
(易错题)写出下列各组相似三角形的对应边的比例式.
(1)若△ABE∽△CDE,则
AB
CD
=
AE
CE
=
BE
DE
AB
CD
=
AE
CE
=
BE
DE
;
(2)若△ABC∽△DCA,则
AB
CD
=
AC
DA
=
BC
CA
AB
CD
=
AC
DA
=
BC
CA
.