试题
题目:
已知两个相似三角形,其中一个三角形的三边的长分别为2,5,6,另一个三角形的最长边为15cm,则它的最短边是
5
5
cm.
答案
5
解:由题意知,两个三角形的相似比是2:5;
设另一个三角形的最短边为x;
则得到2:x=2:5;
解得x=5.
则它的最短边是5cm.
考点梳理
考点
分析
点评
相似三角形的性质.
首先根据相似三角形的性质求出相似比,找出最长边和最短边,然后求出另一个三角形的最短边.
本题主要考查相似三角形的性质和相似比的求法.
找相似题
把一个三角形放大成和它相似的三角形,如果边长扩大为原来的10倍,那么,面积扩大为原来的
100
100
倍;如果面积扩大为原来的10倍,那么,边长扩大为原来的
10
10
倍.
已知△ABC∽△A′B′C′,且它们的周长比为1:2,它们的面积比为
1:4
1:4
.
如图,△ABC∽△ADE,若∠ADE=∠B,那么∠C=
∠AED
∠AED
,
DE
BC
=
AD
AB
AD
AB
=
AE
AC
AE
AC
.
Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,AB=3,BC=2,A′B′=12,则B′C′=
8
8
.
(易错题)写出下列各组相似三角形的对应边的比例式.
(1)若△ABE∽△CDE,则
AB
CD
=
AE
CE
=
BE
DE
AB
CD
=
AE
CE
=
BE
DE
;
(2)若△ABC∽△DCA,则
AB
CD
=
AC
DA
=
BC
CA
AB
CD
=
AC
DA
=
BC
CA
.