试题
题目:
如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB边的中点,P是BC边上一动点(点P不与B、C重合),若以D、C、P为顶点的三角形与△ABC相似,则线段PC=
4或
25
4
4或
25
4
.
答案
4或
25
4
解:∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴AB=10,
∵D是AB边的中点,
∴CD=BD=
1
2
AB=5,
∵以D、C、P为顶点的三角形与△ABC相似,
∴∠DPC=90°或∠CDP=90°,
(1)若∠DPC=90°,则DP∥AC,
∴
BD
AB
=
BP
BC
=
1
2
,
∴BP=
1
2
BC=4,
则PC=4;
(2)若∠CDP=90°,则△CDP∽△BCA,
∴
CD
BC
=
PC
AB
,
即
5
8
=
PC
10
,
∴PC=
25
4
.
∴PC=4或
25
4
.
考点梳理
考点
分析
点评
相似三角形的性质;勾股定理.
由Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB边的中点,即可求得AB与CD的值,又由以D、C、P为顶点的三角形与△ABC相似,可得∠DPC=90°或∠CDP=90°,然后根据相似三角形的对应边成比例,即可求得PC的值.
此题考查了相似三角形的性质与直角三角形的性质.解题的关键是掌握相似三角形的对应边成比例定理的应用与数形结合思想的应用.
找相似题
把一个三角形放大成和它相似的三角形,如果边长扩大为原来的10倍,那么,面积扩大为原来的
100
100
倍;如果面积扩大为原来的10倍,那么,边长扩大为原来的
10
10
倍.
已知△ABC∽△A′B′C′,且它们的周长比为1:2,它们的面积比为
1:4
1:4
.
如图,△ABC∽△ADE,若∠ADE=∠B,那么∠C=
∠AED
∠AED
,
DE
BC
=
AD
AB
AD
AB
=
AE
AC
AE
AC
.
Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,AB=3,BC=2,A′B′=12,则B′C′=
8
8
.
(易错题)写出下列各组相似三角形的对应边的比例式.
(1)若△ABE∽△CDE,则
AB
CD
=
AE
CE
=
BE
DE
AB
CD
=
AE
CE
=
BE
DE
;
(2)若△ABC∽△DCA,则
AB
CD
=
AC
DA
=
BC
CA
AB
CD
=
AC
DA
=
BC
CA
.