试题

题目:
青果学院(2012·赣州模拟)小芳随机地向如图所示的圆形簸箕内撒了几把豆子,则豆子落到圆内接正方形(阴影部分)区域的概率是
2
π
2
π

答案
2
π

解:设圆的半径为R,则圆的面积=πR2,由勾股定理得圆内接正方形的边长=
2
R,其面积=2R2,正方形的面积在整个圆中占的比例为
2R2
πR2
,即
2
π
,故豆子落到圆内接正方形(阴影部分)区域的概率是
2
π
考点梳理
几何概率.
首先确定正方形的面积在整个圆中占的比例,根据这个比例即可求出豆子落到圆内接正方形(阴影部分)区域的概率.
关键是明白豆子落到圆内接正方形(阴影部分)区域的概率是
正方形的面积
圆的面积
找相似题