试题
题目:
(2011·茂名)如图,正方形ABCD内接于⊙O,⊙O的直径为
2
分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( )
A.
2
π
B.
π
2
C.
1
2π
D.
2
π
答案
A
解:因为⊙O的直径为
2
分米,则半径为
2
2
分米,⊙O的面积为π(
2
2
)
2
=
π
2
平方分米;
正方形的边长为
(
2
2
)
2
+(
2
2
)
2
=1分米,面积为1平方分米;
因为豆子落在圆内每一个地方是均等的,
所以P(豆子落在正方形ABCD内)=
1
π
2
=
2
π
.
故选A.
考点梳理
考点
分析
点评
专题
几何概率;正多边形和圆.
在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.
此题主要考查几何概率的意义:一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=
m
n
.
压轴题.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2013·恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
(2011·锦州)如果小强将飞镖随意投中如图所示的正方形木板,那么飞镖落在阴影部分的概率为( )
(2007·临沂)小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )
(2005·衢州)如图,是一个被分成6等份的扇形转盘,小明转了2次结果指针都停留在红色区域.小明第3次再转动,指针停留在红色区域的概率是( )