试题

题目:
某广场地面铺满了边长为36cm的正六边形地砖.现在向上抛掷半径为6
3
cm的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是
4
9
4
9

答案
4
9

青果学院解:欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心、且边与地砖边彼此平行、距离为6
3
cm的小正六边形内(如图).作OC1⊥A1A2,且C1C2=6
3
cm.
因A1A2=A2O=36,A2C1=18,所以,
C1O=
3
2
A2O=18
3

则C2O=C1O-C1C2=12
3

又因C2O=
3
2
B2O,所以,
B2O=
2
3
C2O=
2
3
×12
3
=24.
而B1B2=B2O,则小正六边形的边长为24cm.
故所求概率为
P=
小正六边形的面积
正六边形地砖面积
=
B1
B
2
2
A1
A
2
2
=
242
362
=
4
9

故答案为
4
9
考点梳理
几何概率;正多边形和圆.
欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心、且边与地砖边彼此平行、距离为6
3
cm的小正六边形内,从而计算这个小正多边形的面积,小正多边形与正六边形的面积之比即为所求.
本题考查的是几何概率、正多边形和圆的综合利用,关键是理清题意,找准之间的关系进行解题.
计算题.
找相似题