试题
题目:
(2004·南昌)如图,在平面直角坐标系中,⊙O′与两坐标分别交于A,B,C,D四点,已知:A(6,0),B(0,-3),C(-2,0),则点D的坐标为( )
A.(0,2)
B.(0,3)
C.(0,4)
D.(0,5)
答案
C
解:∵AC⊥BD
∴OA×OC=OB×OD
∵OA=6,OC=2,OB=3
∴OD=4
∵D在y轴的上半轴
∴点D的坐标为(0,4).
故选C.
考点梳理
考点
分析
点评
坐标与图形性质;相交弦定理.
利用相交弦定理可得:OA×OC=OB×OD,可得OD=4,所以点D的坐标为(0,4).
本题用到的知识点为:圆内的两条相交弦,被交点分成的两条线段长的积相等.
找相似题
(2009·鄂州)如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE·EQ的值是( )
(2004·日照)如图,P是直径AB上的一点,且PA=2,PB=6,CD是过点P的弦,那么下列PC的长度,符合题意的是( )
(2003·重庆)如图,⊙O中弦AB、CD相交于点F,AB=10,AF=2.若CF:DF=1:4,则CF的长等于( )
(2002·盐城)如图,⊙O的直径AB=10,P为OA上一点,弦MN经过点P,若AP=2,MP=2,那么MN的长为( )
(2002·苏州)如图,⊙O的弦AB=8cm,弦CD平分AB于点E.若CE=2cm,则ED长为( )