试题
题目:
如图,点A,B,C,D都在圆上,线段AC与BD交于点M,MB=MD,当点B,D,M保持不变,点A在圆上自点B向点D运动的过程中(点A不与点B,点D重合),那么线段MA与MC的乘积( )
A.不变
B.先变大,后变小
C.变大
D.先变小,后变大
答案
A
解:∵点A,B,C,D都在圆上,
∴MB·MD=AM·MC,
∵MB=MD,当点B,D,M保持不变,
∴MB·MD为定值,
∴AM·MC为定值.
故选A.
考点梳理
考点
分析
点评
专题
相交弦定理.
根据相交弦定理直接解答即可.
本题主要考查的是相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.
压轴题;动点型.
找相似题
(2009·鄂州)如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE·EQ的值是( )
(2004·日照)如图,P是直径AB上的一点,且PA=2,PB=6,CD是过点P的弦,那么下列PC的长度,符合题意的是( )
(2003·重庆)如图,⊙O中弦AB、CD相交于点F,AB=10,AF=2.若CF:DF=1:4,则CF的长等于( )
(2002·盐城)如图,⊙O的直径AB=10,P为OA上一点,弦MN经过点P,若AP=2,MP=2,那么MN的长为( )
(2002·苏州)如图,⊙O的弦AB=8cm,弦CD平分AB于点E.若CE=2cm,则ED长为( )