试题
题目:
(2009·扬州模拟)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠BAC=35°,则∠ADC=
55
55
度.
答案
55
解:∵AB为⊙O的直径,
∴∠ACB=90°;
∴∠B=90°-∠BAC=55°;
由圆周角定理知,∠ADC=∠B=55°.
考点梳理
考点
分析
点评
专题
圆周角定理.
在Rt△ABC中,已知了∠BAC的度数,易求得∠B的度数.由于∠B和∠D是同弧所对的圆周角,根据圆周角定理,可知∠B=∠D,由此可求出∠ADC的度数.
本题主要考查的是圆周角定理的推论:
(1)半圆(弧)和直径所对的圆周角是直角;(2)同(等)弧所对的圆周角相等.
计算题;压轴题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.