试题
题目:
(2013·田阳县一模)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为
100
2
m
100
2
m
.
答案
100
2
m
解:∵∠ACB=45°,
∴∠AOB=90°,
∵AB=100m,
∴AO=50
2
m,
∴AD=2AO=100
2
m,
故答案为:
100
2
m
.
考点梳理
考点
分析
点评
圆周角定理;等腰直角三角形.
连接OB,由同弧说对圆周角等于圆心角的一半可知∠AOB=90°,在Rt△AOB中,由勾股定理可知,AO=50
2
m,所以AD=
100
2
m
.
此题主要考查了圆周角定理,以及勾股定理的应用,关键是证出∠AOB=90°,在Rt△AOB中,由勾股定理算出AO的长.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.